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Gain-Bandwidth Limitations and Synthesis of
Single-Stub Bandpass Transmission-
Line Structures

M. E. MOKARI-BOLHASSAN, MEMBER, IEEE, AND WALTER H. KU, MEMBER, IEEE

Abstract—Gain-bandwidth limitations and synthesis of a class of
bandpass transmission-line structures with a single shunted stub and
n cascaded commensurate lines are presented in this paper. With a
shunt shorted stub as the reactive constraint, the optimum gain
bandwidth is derived for an ideal bandpass gain characteristic.
Explicit gain-bandwidth and synthesis results have been obtained for
the class of single-stub cascaded line structures with one and two
cascaded lines for both maximally flat and Chebyshev character-
istics. For the general case of 1 cascaded lines approximate gain-
bandwidth limitations have also been derived. The explicit results
including gain-bandwidth limitations and element values can be used
for the design of this class of bandpass transmission-line networks for
broad-band matching of the reactive constraint as well as impedance
transformation.

1. INTRODUCTION

HE SYNTHESIS of cascaded line structures with a

single stub is well known [1}H5]. The necessary and
sufficient conditions for the realizability of such structures
may be stated as follows. A given transmission scattering
function s,,(jBl) (where f§ is the propagation constant and /
is the line length) is realizable as cascaded commensurate
lines and a single stub if and only if, under the
transformation,

Q = tan fl (1)
the amplitude function is rational, and |s, |* is of the form

KQ2(1 + Q2)

512Q) P = ———5" 2
o120 =5 ) @
where n is the number of cascaded lines, P, is an even
function of degree 2(n + 1) in Q, and

0< |5,(j]Q)P <1, forQ2>0. (3)

We may approximate a desired bandpass characteristic
subject to these constraints. Analytical functions are avail-
able to approximate ideally flat gain responses in the
maximally flat [1] or equiripple sense [2], [3].

The advantages of these structures are many. They pro-
vide a true bandpass characteristic with no transmission at
dc. The stub can be used to adjust the resistor ratio of the
load to the generator without altering the transmission
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Fig. 1. General single-stub cascaded structure used to derive gain-

bandwidth limitations.

characteristics [2], [3]. This type of structure is useful in
broad-band matching a resistor shunted by a short-circuited
transmission line, such loads are encountered in microwave
absorbers, IMPATT diodes, and some antennas.

The gain-bandwidth restrictions for this structure viewed
as a load and shown in Fig. 1 are obtained for both
Butterworth and Chebyshev functions. The integral con-
straint for the load shown in Fig. 1 is given by [2], [6], [7]

*© 1 1 2n
—In dQ = —
.[0 Q% sy )? R, Y,

Explicit relations are obtained for the n = 1 case. The
graph and tables obtained for n = 1 and n = 2 are presented
and are compared with restrictions obtained for ideal gain
characteristics. Finally the results on the adjustment of the
source-to-load resistance ratio by Carlin and Kohler [2] are
extended for gain factors of 0 < K < 1.

P. @)

II. BUTTERWORTH APPROXIMATION

A function approximating single-stub bandpass charac-
teristics in the maximally flat sense is given by [1]

(1 Jcro:oi %)"’2 cotrtiol
Pop=1+2¢° 1+ oot or ©)
where
x=oacos® Q=tanf &*=(10"1"—-1) (6)

and a,, is the insertion loss in decibels at the cutoff frequency
6, /z corresponding to | x| = 1. The parameter o determines
the bandwidth [2], [3]. Substituting from (6) into (5) results
in

K K1+ QY )
PBP Pn+1(Q2)

which is realizable using commensurate line techniques

|S12|2=
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[1]-[3] Here the gain factor K is a positive number less than
unity which will be used for reactance absorption
adjustment.

To find the allowable Y, (see Fig. 1) for a given number of
cascades n, bandwidth o, gain factor K, and the ripple factor
¢, the integral relation of (4) is applied to this class of
functions. For lossless structures we have
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obtained from (11). In general it is of the form

A+ by A%+ b A+ b
1) = 1/2 2 ! o (13
s11(4) P+ a ) +ad+a (13)
The gain-bandwidth restriction is obtained in the form

—(1-K)

2 [1 +(1- K)“Zﬁq]

do
02(1 + Q2 R Y; < . (14)
st = 1= [l =1~ i e T kit o
Q21+ QY +u ( ) p
or
. (1— K1+ Q) + III. CHEBYSHEV APPROXIMATION
Isi:f” = P+ O + 2 (8) ‘The insertion gain function having only one zero of
transmission at dc is given by [2]
where
2 /10 2 |s | K (15)
u* = (10 — 1)(@*—1). ©) N 12 1+ &% cos? (ng + ¢)
Substituting this in (4) gives where X = cos ¢ = a cos 0
o 1 92(1 + QZ)n + ”2 P R
== -—1 Q o “1
Q .[0 " (l—K)QZ(1+QZ)"+,uZd cosﬁ=x\/a2—x2
2n
- Q=tan 6 16
“RT (10) .4 (16)
V2 +1—0) x T(x) + aTye(x) |2
One needs to integrate this to find Y,, which is, in general,  cos? (n¢ + &) = [( v “) )2c ,,(x2) 2T 1(%)
impractical for n > 1. ar =X
(17)
forn=1,
Js1af? = KO+ ) ' (18
U2 fe? — 1+ ) — 1P+ {1+ 26 —al /e — 1+ o) + 1[}Q? + (1 + £2)Q*
and .
51, Mo /o — 1+ o) — 12+ {1 — K + 26%(—a(y/o? — T+ o) + )}Q* +(1 — K + )0 (19)
s lf = .
" oo — L+ a)— 1P + {1+ 26%(—a/a? — 1 +a) + Q2 + (1 + &2)Q°

An alternate method is due to Youla [7]. The polynomials
in
—(1 = K)A*(1 — 2%y + (11)
=21 = 23 4t i
must be factored using numerical techniques. For n = 11itis
easy to factor out (11) in the A domain. The gain-bandwidth
restriction using either the integral constraint of (10) or the
coefficient relations due to Youla is obtained as

Riyz—z%{,/l+2,u—\/(1—K+2,u,/1—K)},
g Ls

for0<K <1

s11(A)s11(=4) =

(12)

where yu is given in (9) in terms of the tolerance «,, and
bandwidth parameter o. For n =2, s;,(1) can be easﬂy

cc/)s2 (¢ + &)
(o —1-—

22202 — 1 — Q)+ 0?(do? — 3 = 30%) +20( /o — 1 —a)(20% — 1 — Q?)(de® — 3 —

Gain-bandwidth restriction is applied to this case (n = 1)
and the explicit result is obtained as

AN

262y + 2ey. /1 + &2

28y
— 1=K —2e%y + 2ey. /1 — K + &2},
for0<K <1 (20)
where
y=la(/o? —1+a)—1]>0. (21)

For n = 1, we can also factor out the reflection function in
. the A domain; but the explicit relations are not obtained.
Setting n = 2 in (15) and (19) results in

3Q%)]

.

92(1 + QZ)Z

(22)
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TABLE 1 TABLE 11
NorMALIZED ELEMENT VALUES FOR A ONE-LINE NORMALIZED ELEMENT VALUES FOR A Two-LINE
ONE-STUB CHEBYSHEV MATCHING NETWORK WITH ¢ = 2 ONE-STUBR BUTTERWORTH MATCHING NETWORK WITH A
(OcTAVE BANDWIDTH) STUB AT THE INPUT AND « = 2 (OCTAVE BANDWIDTH)
RIPPLE PARAMETER £° . RIPPLE PARAMETER c2
K 0.01 0.02 0.04 0.08 0.16 0.32 K 0.01 0.04 0.02 0.16 0.25 0.36
Y, 1.97399  3.16501  4.01176 4.67588  5.22721  5.70182
Yo 1.96257 2.55765 3.26547  4.10189  5.11696  6.42372 0.80 | ¥y, 2.14525  1.80231  1.58706 1.43834  1.32821  1.24257
0.80 |y,  2.22128 2.06897 1.90664  1.75935  1.65042  1.64256 Y 168939 11378 0.84667 0.67077  0.55385  0.47107
Y, 1.8 1.56554  1.27608  1.00668  0.78328 0.61722 Y, 1.62360  1.08347  0.74510  0.56937  0.45540  0.37628
Y1 174775 2.27002 2.89040  3.62706  4.53059  5.70747 Y, 1.75284  2.79032 " 3.52407 4,09854  4.57514  4.98533 '
0.85 1Yy,  1.89938 1.76586 1.62732  1.50623  1.43139  1.43167 0.85 | Y, 1.83192 1.53178  1.34622 1.21892  1.12503  1.05220
Y 158348 1.31030 1.06224  0.83630  0.65243  0.51770 Voo 1.41987  0.94497  0.69926 0.55226  0.45519  0.38658
Yo 153719 1.98803 2.52398  3.16592  3.96550  5.02130 Y, 1.36020  0.86172  0.61089 0.46479  0.37067  0.30563
0.90 Yy,  1.58930 1.47484 1.36073  1.26709  1.21691 1.23381 :
. Y, 1.53553  2.42132  3.04377 3.53008  3.93325  4.28018
v, Loz 1.06410 0.85759  0.67465  0.52023  0.42428 0.90
. Yo, 152978 127139 1.11472 1.00819  0.93001  0.86955
Yo 13U 1.68641 2.13%50  2.68377  3.38233  4.31E72 Yoo 1.15017  0.75956  0.55811 -  0.43%06  0.35102  0.30610
0.95 |vg,  1.26787 1.17560 1.09008  1.02736  1.00417  1.03767 v, 11020 0.68705  0.48253 0.36508  0.20007  0.23854
Yoo 0.97745 0.80825 0.64802  0.51174  0.40641 0.33129
Yo, 130106 2.02205  2.52425 2.91553  3.23966  3.51854
Y5, 0.87763 1.13651 1.46390  1.88431  2.43746 3.18714 0.95 |y 1oss  Looms  0.8749 070022 0.72887  ©.68092
Lo vy, 0.75012 0.71571 0.69061  0.68128  0.69619 0.74722 Y 088592 05715 0.41250 0.32273  0.26M47  0.2237
Y. 0.46083 0.38641 0.32054  0.26554  0.22217  0.18992 Y 0.83756  0.50578  0.35053 0.26287  0.20772  0.17015
Y, 0.65639  0.03385  1.12075 1.26557  1.38564  1.48923
1.00 | Yo, 0.50081 0.47462  0.41370 0.37488  0.34641  0.32497
Substituting (22) in Yop 0.27987  0.15993  0.1154 0.08551  0.06928  0.05821
2 2 Y, 0.22440  0.11355  0.07269 0.05214  0.04000  0.03209
, (1 -—-K)+¢&*cos? (ng + &) L
|11 ]* = 1+ &% cos? (ng + &) (23)
. t where
we obtain (o) = a2+ D2 — 1) (26)
. 2104 2 4 2 2
{1—- K)Q® +[2(1 — K) + e*(Jo? — 1+ 20)’]Q* + {1 — K + 26} [—6a* + Ta® — 1 + 20, /a® — 1
2 2 2 p)
) (=30 + 2)JQ% +{e[/oP — 1 (202 — 1) + 203 — 20]*}}
Sy 1(]9)‘ = )

+2[o? — 1(20% — 1) + 20® — 207}

The rest of the derivation is similar to the Butterworth case.

For large n we have to evaluate |s,,(jQ)|* depending onn
and the type of response. Then the integral constraint may
be applied directly to |s,4 |, but thereis no general solution
available and each n needs separate treatment. One may also
factor out |sy;|* into s;(4)s;;(—A) and then use the
gain-bandwidth relations of Youla [7].

The gain-bandwidth relations obtained in the last sections
are applied to n = 1 and n = 2 for Butterworth and Cheby-
shev approximations. Since sy, (4)s,  (—4)has been factored
in order to apply gain-bandwidth restrictions, it is a simple
matter to synthesize s,,(1) further to realize the other
elements in the circuit. This is performed for the octave
bandwidth and the results are shown in Tables I-111.

Reactance absorption for different bandwidths is deter- .

mined using the gain-bandwidth restrictions and the results
are compared with those of ideal-gain characteristics in the

- next section. It should be noted that once Y, is determined
the generator impedance is easily obtained from

g1 =Ko’R,Y?/(4’f () (25)

U8 4[24 e2(Ja? = 1 + 20404 + {1 + 267 —60* + Tu? — 1 + 200 /0% — 1(—3a? + 2)[}Q2

(24)

for the Butterworth approximation and

fle) = 4Qu)*"" Pfo® — 1) (27)
for the Chebyshev approgcimation.

Some observation is made in the following before we
apply  gain-bandwidth  restrictions to ideal-gain
characteristics.

a) Thelowest value of Y,corresponds to K = 1. If we need
to absorb higher Y, we may do so either by decreasing K or
increasing e.

b) The maximum resistor ratio obtainable is the largest
for K = 1 and as ¢ increases the resistor ratio also increases.

These two observations are theoretically predicted as will
be discussed later in following sections.

c) Forn = 1, Y, is very close to normalized Y, = 1.0, thus
making the realization practical.

d) Forn =2, Yy, and Y,, do not spread too much for the
Butterworth case, but the spread is very high for the
Chebyshev case. Thus Butterworth results may be prac-
tically easier to realize.
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TABLE II1
NORMALIZED ELEMENT VALUES FOR A TWO-LINE
ONE-STUB CHEBYSHEV MATCHING NETWORK WITH A
STUB AT THE INPUT AND « = 2 (OCTAVE BANDWIDTH)

RIPPLE PARAMETER &2
K 0.01 0.04 0.09 0.16 0.25  0.36
Yo 3.79583  5.00563  5.83086  6.55919  7.27133  7.99286
0.80 | ¥y 1.47093  1.21099  1.13029  1.11725  1.13889 1.18140
Yor 0.63969  0.34725  0.25168  0.20990  0.18976 0.18031
Y 0.49514  0.21527  0.12980  0.09241  0.07268 0.06098
Y5, 3.31119  4.35534  5.08705  5.74731  6.39885  7.06084
0.85 | Yy, 1.25032  1.03657  0.97595  0.97239  0.99779  1.04050
Yoo 0.52574  0.28665  0.210015  0.17742  0.16216  0.15549
Y, 0.40033  0.17315  0.10499  0.07538  0.05980  0.05057
Yg, 2.83305  3.72021  4.36818  4.96773  5.56499 6.17139
0.90 | ¥, 1.03946  0.87156  0.83094  0.83566  0.86566 0.90839
Yor 0.4173  0.22975  0.17147  0.14726  0.13653 0.13241
Y 0.31030  0.13377  0.08197  0.05963  0.04788  0.04090
Vs 2.31578  3.04933  3.62316  4.16846  4.71343  5.26502
0.95 | ¥, 0.82409  0.70666  0.68769  0.70303  0.73522 0.77747
Yor 0.30709  0.17337  0.13365  0.11789  0.11153 0.10980
Y, 0.21885  0.09486  0.05952  0.04432  0.03626 0.03143
Yo, 1.32930  1.92223  2.42612  2.90069  3.36505 3.82715
1.00 | Yo, 0.50551  0.47816  0.48853  0.51309  0.54547 0.58304
Yo 0.13921  0.09525  0.08188  0.07712  0.07603 0.07708
Y, 0.07591  0.03968  0.02809  0.02258  0.01946 0.01748

¢) Finally, the rate of change in the element values
becomes lower when ¢ increases beyond certain values.

It is usually a good practice to pick K = 1 for most of the
applications unless some design specifications are not met.
The increase in reactance absorption may not be justified if
we have to increase the ripple factor beyond certain values
predicted from the power match requirement and the tables.

IV. IDEAL-GAIN CHARACTERISTICS

Now we apply the integral constraint of (7) to the
ideal-gain response shown in Fig. 2. For this ideal response
(7) reduces to

® 1 1 2n
—In ——do< . 28
fm921n1—KdQ—Rgx (28)
Integrating this leads to
K <1—exp (—2n/o* — 1/R,Y,). (29)

From this In {1/[s11 |max} versus /o — 1/R, Y;is plotted for
the ideal case in Figs. 3 and 4, along with the same results for

then = 1and then = 2 case for different ripple factors 2 and
the bandwidth parameter. These curves show that as &?
increases the reactance absorption increases and becomes
very close to the ideal curves. It is also noted that as n
increases from one to two the reactance absorption increases
considerably closer to the optimal case. Therefore reactance
absorption is usually achieved for small»’s. Increasing n will
result in a lower ripple parameter.
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It should be pointed out here that the gain-bandwidth
relations obtained here are not optimal in the sense of the
ideal bandpass lumped domain response [8]. They are
optimum for the case of the ideal periodic passband ob-
tained using the Q = tan 8 transformation. Therefore, the
results are valid for the comparison of an actual nth-order
structure having periodic passbands with the ideal case.

V1. CONCLUSIONS

The gain-bandwidth relations for  single-stub
transmission-line structures have been investigated. The
results are explicit for n = 1 for both Chebyshev and Butter-
worth approximations. The results forn =1 and n = 2 are
compared with the optimal reactance absorption curve for
the ideal-gain response. As we decrease K or increase ¢
reactance absorption increases and the amount of the
tradeoff involved is easily obtained from either the graphs or
the tables.

- The results of Carlin and Kohler [2] for resistor ratio
adjustment for gain factor K = 1 have been extended for
0 < K < 1. The results are also related for the reactance
absorption properties of this type of structure.
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Noise Calibration Repeatability of an Airborne
Third-Generation Radiometer

HANS-JUERGEN C. BLUME

Abstract—A third-generation S-band radiometer has been cal-
ibrated at intervals over 3} years. The built-in stabilization concepts
have proven to be very effective. In spite of some nonideal conditions
(on runway, in wind, and in rain), an rms value of 0.7 K calibration
repeatability has been observed with an average temperature devia-
tion (bias error) of 0.03 K.

INTRODUCTION

This third-generation radiometer is a 2.65-GHz (S-band) appa-
ratus [1], which has been operated during about 3% years for
about 400 h from aircraft or other elevated platforms. At intervals,
the radiometer has been calibrated with a cryogenic noise source
positioned in front of the antenna aperture. The measurement
deviation from the temperature of the calibrated noise source
represents an indication of the longtime stability of the overall
characteristic of the radiometer. These deviations are presented
and discussed for the 34 years of existence of the radiometer.

Manuscript received May 10, 1976; revised April 11, 1977.
The author is with NASA Langley Research Center, Hampton, VA 23665.

CALIBRATION PROCEDURES

A schematic representation of the calibration setup and the
operation during calibration is shown in Fig. 1 in the form of a
block diagram. As can be seen in Fig. 1 two concepts have been
added to the first-generation Dicke radiometer [2]. The first con-
cept consists in equalizing the temperature of the reference noise
source at the second input of the Dicke switch with the temper-
ature of the lossy microwave components between the antenna
terminal and receiver input; once these temperatures are equalized
they are kept extremely constant (+0.03 K). The second concept
consists in injecting pulsed portions from a constant noise source
of higher noise power (avalanche diode) into the received noise
power until the noise power of both Dicke-switch inputs is the
same. The pulse frequency which determines the average value of
the injected noise power is controlled by a feedback system. The
pulse frequency is then a measure of the noise power (radiation)
received by the antenna. In addition to eliminating both the time-
consuming calibration cycles of the second-generation radiometer
[3] and the noise effects of the microwave components, these two
concepts also have the advantage of establishing longtime stability
of the overall characteristic of the radiometer, in spite of gain
variations, changes of losses, and other aging effects, as long as the
noise souree output power for noise injection remains constant.
The ambient temperature of the noise source is stabilized to
+1° C



