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Gain-Bandwidth Limitations and Synthesis of
Single-Stub Bandpass Transmission-

LineStructures
M. E. MOKARI-BOLHASSAN, MEMBER, IEEE, AND WALTER H. KU, MEMBER, IEEE

Abstract—Gain-bandwidth limitations and synthesis of a class of

bandpass transmission-line structures with a single shunted stnb and

n cascaded commensurate lines are presented in this paper. With a
shunt shorted stub as the reactive constraint, the optimum gain
bandwidth is derived for an ideal bandpass gain characteristic.
Explicit gain-bandwidth and synthesis results have been obtained for

the class of single-stub cascaded line structures with one and two

cascaded lines for both maximally flat and Chebyshev character-
istics. For the general case of n cascaded lines approximate gain-
bandwidth limitations have also been derived. Tbe explicit results

inclnding gain-bandwidth limitations and element values can be used
for the design of this class of bandpass transmission-line networks for

broad-band matching of the reactive constraint as well as impedance

transformation.

I. INTRODUCTION

T

HE SYNTHESIS of cascaded line structures with a

single stub is well known [1]–[5]. The necessary and

sufficient conditions for the realizability of such structures

may be stated as follows. A given transmission scattering

function Slz(j/ll) (where B is the propagation constant and 1

is the line length) is realizable as cascaded commensurate

lines and a single stub if and only if, under the

transformation,

Q = tan @ (1)

the amplitude function is rational, and Is ~z 12is of the form

Kf22(l + C12~
ls12(.jQ)l’ = ~n+1(Q2) (2)

where n is the number of cascaded lines, P,+ ~ is an even

function of degree 2(n + 1) in Q, and

0< lsJj!2)12 s 1, for Q2 >0. (3)

We may approximate a desired bandpass characteristic

subject to these constraints. Analytical functions are avail-

able to approximate ideally flat gain responses in the
maximally flat [1] or equiripple sense [2], [3].

The advantages of these structures are many. They pro-

vide a true bandpass characteristic with no transmission at

dc. The stub can be used to adjust the resistor ratio of the

load to the generator without altering the transmission
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Fig. 1. General single-stub cascaded structure used to derive gain-

bandwidth limitations.

characteristics [2], [3]. This type of structure is useful in

broad-band matching a resistor shunted by a short-circuited

transmission line, such loads are encountered in microwave

absorbers, IMPATT diodes, and some antennas.

The gain-bandwidth restrictions for this structure viewed

as a load and shown in Fig. 1 are obtained for both

Butterworth and Chebyshev functions. The integral con-

straint for the load shown in Fig. 1 is given by [2], [6], [7]

I.:ih ls:,12~*=&p”
(4)

Explicit relations are obtained for the n = 1 case. The

graph and tables obtained for n = 1 and n = 2 are presented

and are compared with restrictions obtained for ideal gain

characteristics. Finally the results on the adjustment of the

source-to-load resistance ratio by Carlin and Kohler [2] are

extended for gain factors of O < K <1.

II. BUTTERWORTH APPROXIMATION

A function approximating single-stub bandpass charac-

teristics in the maximally flat sense is given by [1]

[ 1(1+ cot2 Ocylz Cotn+ , ~ 2

PBP= 1+82
Cotn + 1 ec

[1+ cot’ fly
(5)

where

X=(x costl f2=tan0 :2 = (lOaJIO – 1) (6)

and u~ is the insertion loss in decibels at the cutoff frequency

6C/z corresponding to Ix I = 1. The parameter u determines

the bandwidth [2], [3]. Substituting from (6) into (5) results

in

Kt22(l + f22~
IS1212 =;, = pn+1(Q2) (7)

which is realizable using commensurate line techniques
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[1]-[3]. Here the gain factor K is a positive number less than obtained from (11 ). In general it is of the form

unity which will be used for reactance absorption
13+ b222+b12+bo

adjustment. S1l(A) = –(1 – K)i’z (
To find the allowable Y, (see Fig. 1) for a given number of

13+az22+a11+ao”

cascades n,.bandwidth a, gain factor K, and the ripple factor The gain-bandwidth restriction is obtained in the form

E, the integral relation of (4) is applied to this class of

functions. For lossless structures we have
[

2 l+(l– K)l/2~
a. 1

KQ2(1 + i22~ R~~<
blao–boal” (

lsl, [2=1– IS121’= 1–Q2(1+*2Y+V2 (1 - K)l/2

a$

3’)

4)

or

(1 – K)Q2(1 + C?2Y + #
III. CHEBYSHEV APPROXIMATION

1s,,1’=
S22(1 + !iYy + pz -

(8) -The insertion gain function having only one zero of

transmission at dc is given by [2]
where

K
/J2 = (10”’J1O – 1)((X2– 1). (9) 1s1212= 1 +&2 COS2(n@+{)

(15)

Substituting this in (4) gives
where

x=cos~=acose

Jct2-1
Cos <=x —

c12— X2

2n—— (lo) and Q=tan O (16)
R,~”

One needs to integrate this to find ~, which is, in general,
[

(/- - a) x z(x)+ UT+,(X) 2
COS2(n@ + t) =

impractical for n > 1. d== 1
(17).,

(18)

for n = 1,

1s1212= 2
K(Q2 + Q4)

& {a(@ – 1 + a) -– 1}2 + {1 + 2&2[–1%(/a + a) + 1]}Q2 + (1 + &2)f24

and

1s,,12=
e2{u(~~ + a) – 1}2 + {1 – K + 2&2(–u(~~ + u) + l)}Q2’ +(1 – K + &2)f24

(19)
:2{~(~~ + W) – 1}2 + {1 + 2E2(–&x/- + u) + 1}S)2 + (1 + s2)@ “

Gain-bandwidth restriction is applied to this case (n= 1)
An alternate method is due to Youla [7]. The polynomials and the explicit result is obtained as

in

-(1 - K)A2(1 - /12~ + p2 ill) 1
S1l(A)S1l(– A) = —>J{ l–2&2y+2&yJm

–12(1 – azy + /12
R~ ~ 2E)I 4

must be factored using numerical techniques. For n = 1 it is
— ~~ – K – 2E2Y + 2EY~~},

easy to factor out (11) in the 2 domain. The gain-bandwidth for O<K<l (20)
restriction using either the integral constraint of (10) or the

coefficient relations due to Youla is obtained as
where

(21)Y=[W=+4-1]>0.

for O<K<l (12)
For n = 1, we can also factor out the reflection function in

where ,u is given in (9) in terms of the tolerance ct~ and the 1 domain; but the explicit relations are not obtained.

bandwidth parameter ct. For n = 2, SI ~(1) can be easily Setting n = 2 in (15) and (19) results in

COS2(24 + c)

= [(~’cf”’ -1- u)2(2cX’ -1- Q)2 + cP(4cX2-3- 3Q2)2 +2a(/@=l - a)(2M2 -1- f22)(4a2 -3- 3Q2)],

Q2(1 + S22)2
(22)
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TABLE I
NORMALIZED ELEMENT VALUES FOR A ONE-LINE

ONE-STUB CHEBYSHEV MATCHING NETWORK WITH a = 2

TABLE II
NORMALIZED ELEMENT VALUES FOR A TWO-LINE

ONE-STUB BUTTERWORTH MATCHING NETWORK WITH A

(OCTAVE BANDWIDTH) STUB AT THE INPUT AND a = 2 (OCTAVE BANDWIDTH)

RIPPLE PARAMETERS2

K 0.01 0.02 0.04 0.08 0.16 0.32

RIPPLE PARAMETEREz

0.01 0.04 0.02 0.16 0.25 0.36

Ysl 1.97399 3.16501 4.01176 4.67588 5.22721 5.701s2

Yol
2.14525 1.80231 1.58706 1.43834 1.32821 1.24257

Yoz 1.68939 1.13784 0.84667 0.67077 0.55385 0.47107

‘L 1.62360 1.04347 0.74510 0.56937 0.45540 0.37628

Ysl 1.75284 2.79032 3.52407 4.09854 4.57514 4.98533

Yol 1.83192 1.53178 1.34622 1.21892 1.12503 1.05220

Y02
1.41987 0.94497 0.69926 0.55226 0,45519 0.38658

‘L 1.36020 0.86172 0.61089 0.46479 0.37067 0:30563
.,

Ysl 1.53553 2.42132 3.04377 3.53008 3.93325 4.28018

“01 1.52978 1.27139 1.11472 1.00819 0.93001 0.86955

Yoz 1.15917 0.75956 0.55811. 0.43906 0.36102 0.30610

~L 1.10524 0.68705 0.48253 0.3650S 0.29007 0.23854
—

‘s1 1.30106 2.02209 2.52425 2.91553 3.23966 3.51854

Yol 1.21525 1.00115 0.87495 0.79022 0.72847 0.68092

Y02
0.88592 0.56715 0.41250 0.32273 0.26447 0.22374

‘L
0.83756 0.50578 0.35053 0.26287 0.20772 0.17015

—

Ysl 0.65639 0.93385 1.12075 1.26557 1.3S564 1.48923

Yol
0.59081 0.47462 0.41370 0.37448 0.34641 0.32497

Y02 0.27987 0.15993 0.1154 0.0s551 0.06928 0.05821

YI 0.22440 0.11355 0.07269 0.05214 0.04000 0.03209

K

1’s11.96257 2.55765 3.26547 4.10189 5.11696 6.42372 0.80

0.80 Yol 2.22128 2.06897 1.90664 1.75935 1.65942 1.64256

IY, 1.84358 1.56554 1.27598 1. 0066s 0.78328 0,61722

Ih 1.74775 2.27002 2.89049 3.62706 4.53059 5.70747

0“85 Yol 1.89938 1.76586 1.62732 1.50623 1.43139 1.43167 0.s5

0.90

lY, 1.55346 1.31030 1.06224 0.83630 0.65243 0.61770

Ipsl 1.53719 1.98803 2.52398 3.16592 3.96550 5.02130

0.90 IYO, 1.58930 1. 474s4 1.36073 1.26709 1.21691 1.233S1

‘L i.27239 1.06410 0.85759 0.67465 0.52923 0.42428

Ysl 1.31137 1.68641 2.13550 2.68377 3.38233 4.31872

0“95 ’01 1. 267S7 1.17560 1.09004 1.02736 1.00417 1.03767

0.95

1.00

1.0 IYO, 0.75012 0.71571 0.69061 0.68128 0.69619 0.74722

‘L 0.46083 0.38641 0.32054 0.26554 0.22217 0.18992

Substituting (22) in

l,,,l’= (l-- ~)+ ’’co(n ~+<)<)
1 +:2 COS2(no + @

(23)
where

,(f(a) = LY2@+1)a’ – 1) (26)we obtain

s11(jC?)\2 =

{{(1 - I@’ + [2(1 -K)+ e’(~- + 2ct)2]f24+ {1 – K + 2E2[-6CX4 + 7ct2-1 + 2ct~=

~(-3cd + 2)]}Q’ +{&’[Ja(2a’ -1)+ 2fx3 - 2a]’}}

{Q’ + [2+ &2(~~ + 2CX)2]f24+ {1 + 2&2[–61x4 + 7a2 – 1 + 2u/~ (–31X2 + 2)]}L22 “

+ &’[J= (2CZ’– 1) + 2LX3– 2a]’}) (24)

for the Butterworth approximation andThe rest of the derivation is similar to the Butterworth case.

For large n we have to evaluate Is ~1($2) 12depending on n

and the type of response. Then the integral constraint may

be applied directly to IS1~ 12,but there is no general sblution

available and each n needs separate treatment. One may also

factor out \S1~ 1’ into S1~(~)sl l(–A) and then use the

gain-bandwidth relations of Youla [7].

The gain-bandwidth relations obtained in the last sections
are applied to n = 1 and n = 2 for ButterWorth and Cheby-

shev approximations. Since S1~(2)s11 ( – A) has been factored
in order to apply gain-bandwidth restrictions, it is a simple

matter to synthesize s ~~(1) further to realize the other

elements in the circuit. This is performed for the octave

bandwidth and the results are shown in Tables I-III.

Reactance absorption for different bandwidths is deter-

mined using the gain-bandwidth restrictions and the results

are compared with those of ideal-gain characteristics in the

next section. It should be noted that once Y, is determined

the generator impedance is easily obtained from

g~ = .K~2Rg Y:/(4’2~(~)) (25)

f(a) = +(2a)’(”+ ‘)(CI’ – 1) (27)

for the Chebyshev approximation.

Some observation is made in the following before we

apply gain-bandwidth restrictions to ideal-gain
characteristics.

a) The lowest value of Y, corresponds to K = 1. If we need

to absorb higher Y,, we may do so either by decreasing K or

increasing 6.

b) The maximum resistor ratio obtainable is the largest

for K = 1 and as &increases the resistor ratio also increases.

These two observations are theoretically predicted as will

be discussed later in following sections.

c) For n = 1, YO1is very close to normalized Y, = 1.0, thus

making the realization practical.

d) For n = 2, YO~ and Y02 do not spread too much for the

Butterworth case, but the spread is very high for the

Chebyshev case. Thus Butterworth results may be prac-

tically easier to realize.
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K

0.80

0.85

0.90

0.95

1.00

TABLE III
NORMALIZED ELEMENT VALUES FOR A TWO-LINE

ONE-STUB CHEBYSHEV MATCHING NETWORK wmH A
STUB AT THE INPUT AND u = 2 (OCTAVE BANDWIDTH)

RIPPLE PARAMETER C2
—

0.01 0.04 0.09 0.16 0.25 0.36

Ysl
3.79583 5.00563 5.83046 6.55919 7.27133 7.99286

Yol
1.47093 1.21099 1.13029 1.11725 1.13889 1.1s140

Y02
0.63969 0.34725 0.25168 0.20990 0.18976 0.18031

v, 0.49514 0.21527 0.12980 0.09241 0.07268 0.06098

Ysl 3.31119 4.35534 5.08705 5.74731 6.39885 7.06084

“01 1.25032 1.03657 0.97595 0.97239 0.99779 1.04050

Y02 0.52574 0.28665 0.21015 0.17742 0.16216 0.15549

‘L 0.40033 0.17315 0.10499 0.07538 0.05980 0.05057

“s1 2.83305 3.72021 4.36818 4.96773 5.56499 6.17139

Yol 1.03946 0.87156 0.83094 0.83566 0.86566 0.90839

Y02 0.41734 0.22975 0.17147 0.14726 0.13653 0.13241

Y, 0.31030 0.13377 0.08197 0.05963 0.04788 0.04090

Ysl 2.31578 3.04933 3.62316 4.16846 4.71343 5.26592

Yol 0.82409 0.70666 0.68769 0.70303 0.73522 0.77747

Y02 0.30709 0.17337 0.13365 0.11789 0.11153 0.10980

Y, 0.21885 0.09486 0.05952 0.04432 0.03626 0.03143

Ysl 1.32930 1.92223 2.42612 2.90069 3.36505 3.82715

Yol.
0.50551 0.47816 0.48853 0.51309 0.54547 0,58304

Y02 0.13921 0.09525 0.08188 0.07712 0.07609 0.07708

Y, 0,07591 0.03968 0.02809 0.02259 0.01946 0.0174S

e) Finally, the rate of change in the element values

becomes lower when e increases beyond certain values.

It is usually a good practice to pick K = 1 for most of the

applications unless some design specifications are not met.

The increase in reactance absorption may not be justified if

we have to increase the ripple factor beyond certain values

predicted from the power match requirement and the tables.

IV. IDEAL-GAIN CHARACTERISTICS

Now we apply the integral constraint of (7) to the

ideal-gain response shown in Fig. 2. For this idleal response

(7) reduces to

Integrating this leads to

(29)

From this in (1/ S111~,~} versus ~=/R9 Y.is plotted for
1?the ideal case m igs. 3 and 4, along with the same results for

the n = 1 and then = 2 case for different ripple factors:2 and

the bandwidth parameter. These curves show that as E2

increases the reactance absorption increases and becomes

very close to the ideal curves. It is also noted that as n

increases from one to two the reactance absorption increases

considerably closer to the optimal case. Therefore reactance

absorption is usually achieved for small n’s. Increasing n will

result in a lower ripple paraineter.

152112

I

1
I

I I
+W + o -1 -w x = a cosfJT

Fig. 2. Ideal-gain characteristics used to derive optimal gain-bandwidth
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It should be pointed out here that the gain-bandwidth

relations obtained here are not optimal in the sense of the

ideal bandpass lumped domain response [8]. They are

optimum for the case of the ideal periodic passband ob-

tained using the Q = tan O transformation. Therefore, the

results are valid for the comparison of an actual nth-order

structure having periodic passbands with the ideal case.

VI. CONCLUSIONS

The gain-bandwidth relations for single-stub

transmission-line structures have been investigated. The

results are explicit for iz = 1 for both Chebyshev and Butter-

worth approximations. The results for n = 1 and n = 2 are

compared with the optimal reactance absorption curve for

the ideal-gain response. As we decrease K or increase e

reactance absorption increases and the amount of the

tradeoff involved is easily obtained from either the graphs or

the tables.

The results of Carlin and Kohler [2] for resistor ratio

adjustment for gain factor K = 1 have been extended for

0< K <1. The results are also related for the reactance

absorption properties of this type of structure.
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Letters

Noise Calibration Repeatability of an Airborne

Third-Generation Radiometer

HANS-JUERGEN C. BLUME

Abstract—A third-generation S-band radiometer has been cal-
ibrated at intervals over 3* years. The built-in stabilization concepts
have proven to be very effective. In spite of some nonideal conditions

(on runway, in wind, and in rain), an rms value of 0.7 K calibration
repeatability has been observed with an average temperature devia-
tion (bias error) of 0.03 K.

INTRODUCTION

This third-generation radiometer is a 2.65-GHz (~-band) appa-

ratus [1], which has been operated during about 3* years for

about 400 h from aircraft or other elevated platforms. At intervals,

the radiometer has been calibrated with a cryogenic noise source

positioned in front of the antenna aperture. The measurement

deviation from the temperature of the calibrated noise source

represents an indication of the longtime stability of the overall

characteristic of the radiometer. These deviations are presented

and discussed for the 3* years of existence of the radiometer.

Manuscript received May 10, 1976; revised April 11, 1977.

The author is with NASA Langley Research Center, Hampton, VA 23665.

CALIBRATION PROCEDURES

A schematic representation of the calibration setuD and the

operation during calibration is shown in Fig. 1 in the form of a
block diagram. As can be seen in Fig. 1 two concepts have been
added to the first-generation Dicke radiometer [2]. The first con-

cept consists in equalizing the temperature of the reference noise

source at the second input of the Dicke switch with the temper-

ature of the lossy microwave components between the antenna

terminal and receiver input; once these temperatures are equafized

they are kept extremely constant (~ 0.03 K). The second concept

consists in injecting pulsed portions from a constant nowe source
of higher noise power (avalanche diode) into the received noise
power until the noise power of both Dicke-switch inputs is the
same. The pulse frequency which determines the average value of
the injected noise power is controlled by a feedback system. The
pulse frequency is then a measure of the noise power (radiation)
received by the antenna. In addition to eliminating both the time-
consuming calibration cycles of the second-generation radiometer
[3] and the noise effects of the microwave components, these two
concepts also have the advantage of establishing longtime stability
of the overall characteristic of the radiometer, in spite of gain
variations, changes of losses, and other aging effects, as long as the
noise source output power for noise injection remains constant.
The ambient temperature of the noise source is stabilized to
+ 1° c.


